Probabilistic polynomials, AC0 functions and the polynomial-time hierarchy

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Analytic Polynomial Time Hierarchy

Motivated by results on interactive proof systems we investigate an 9-8-hierarchy over P using word quantifiers as well as two types of set quantifiers. This hierarchy, which extends the (arithmetic) polynomial-time hierarchy, is called the analytic polynomial-time hierarchy. It is shown that every class of this hierarchy coincides with one of the following classes: pk, pk (k 0), PSPACE, exp k ...

متن کامل

Inverting Onto Functions and Polynomial Hierarchy

The class TFNP, defined by Megiddo and Papadimitriou, consists of multivalued functions with values that are polynomially verifiable and guaranteed to exist. Do we have evidence that such functions are hard, for example, if TFNP is computable in polynomial-time does this imply the polynomial-time hierarchy collapses? By computing a multivalued function in deterministic polynomial-time we mean o...

متن کامل

Certifying polynomials for AC0[⊕] circuits, with applications

In this paper, we introduce and develop the method of certifying polynomials for proving AC0[⊕] circuit lower bounds. We use this method to show that Approximate Majority cannot be computed by AC0[⊕] circuits of size n1+o(1). This implies a separation between the power of AC0[⊕] circuits of nearlinear size and uniform AC0[⊕] (and even AC0) circuits of polynomial size. This also implies a separa...

متن کامل

A Classification of the Probabilistic Polynomial Time Hierarchy Under Fault Tolerant Access to Oracle Classes

We show a simple application of Zuckerman's ampliication technique to the classiication problem of the probabilistic polynomial time hierarchy formed by interleaving all possible oracle classes from BPP, RP, coRP and ZPP, in any nite number of levels. In the fault tolerant model introduced by Cai, Hemachandra and Vysko c, we arrive at a complete classiication.

متن کامل

Descriptive Complexity of #AC0 Functions

We introduce a new framework for a descriptive complexity approach to arithmetic computations. We define a hierarchy of classes based on the idea of counting assignments to free function variables in first-order formulae. We completely determine the inclusion structure and show that #P and #AC0 appear as classes of this hierarchy. In this way, we unconditionally place #AC0 properly in a strict ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Theoretical Computer Science

سال: 1993

ISSN: 0304-3975

DOI: 10.1016/0304-3975(93)90214-e